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ABSTRACT
Petascale science simulations generate 10s of TBs of ap-
plication data per day, much of it devoted to their check-
point/restart fault tolerance mechanisms. Previous work
demonstrated the importance of carefully managing such
output to prevent application slowdown due to IO blocking,
resource contention negatively impacting simulation perfor-
mance and to fully exploit the IO bandwidth available to
the petascale machine. This paper takes a further step
in understanding and managing extreme-scale IO. Specifi-
cally, its evaluations seek to understand how to efficiently
read data for subsequent data analysis, visualization, check-
point restart after a failure, and other read-intensive oper-
ations. In their entirety, these actions support the ‘end-to-
end’ needs of scientists enabling the scientific processes be-
ing undertaken. Contributions include the following. First,
working with application scientists, we define ‘read’ bench-
marks that capture the common read patterns used by anal-
ysis codes. Second, these read patterns are used to evaluate
different IO techniques at scale to understand the effects
of alternative data sizes and organizations in relation to the
performance seen by end users. Third, defining the novel no-
tion of a ‘data district’ to characterize how data is organized
for reads, we experimentally compare the read performance
seen with the ADIOS middleware’s log-based BP format to
that seen by the logically contiguous NetCDF or HDF5 for-
mats commonly used by analysis tools. Measurements as-
sess the performance seen across patterns and with different
data sizes, organizations, and read process counts. Out-
comes demonstrate that high end-to-end IO performance
requires data organizations that offer flexibility in data lay-
out and placement on parallel storage targets, including in
ways that can make tradeoffs in the performance of data
writes vs. reads.
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1. INTRODUCTION
Scientific productivity is a key goal when running petas-

cale science simulations. To achieve this goal, scientists must
analyze enormous quantities of data generated by petascale
codes. This is an important technical challenge because
obtaining high ‘end-to-end’ IO performance requires opti-
mizing both for writing simulation output to storage and
for reading it for subsequent data processing and analysis.
Several complicating issues to consider when reaching these
goals include the following. First, as HPC applications run
with higher process counts, we see increased frequencies and
sizes in the checkpoints needed for fault tolerance [23]. Sec-
ond, there are proportional increases in the resolution and
sizes of the data analysis outputs used to ascertain applica-
tion progress and health, to extract select scientific insights,
or for code coupling in complex simulation systems. And
third, already, for certain analysis systems in common use,
such as the VisIt visualization system [26] used to render
scientific data, IO performance has come to dominate all
other costs observed in their use [8].

Middleware-based methods have been used in some of the
recent work on extreme-scale IO. Improvements have been
demonstrated by increasing write performance [15], creating
new output formats for efficient data storage across stor-
age targets [13], enriching IO software stacks with meth-
ods for data staging [2, 17], improving IO performance with
asynchronous or adaptive IO methods [12] and by explicitly
scheduling such data movements [3]. An issue remaining for
such work, however, is the aforementioned consideration of
end-to-end IO performance. Once data has been written, it
must be efficiently read by restarts and by the analysis or vi-
sualization codes used for data exploration and understand-
ing. This paper seeks to both support further examinations
of reading performance by proposing common reading pat-
terns that should be evaluated for subsequent read-centric
work as well as showing a set of evaluations using these pat-
terns.

Working with application scientists for petascale science
codes, the paper first contributes a set of six common read
patterns seen for these applications’ checkpoint/restart, anal-
ysis, and visualization data. Second, experimental evalu-
ations based on these patterns compare the performance
seen when data is written in two different ways. The first
evaluation uses a logically contiguous layout proposed and
adopted by the NetCDF and HDF communities decades ago



for portability and in an effort to simplify subsequent read
tasks. The second evaluation uses a log-based data format,
a purposeful departure from logically contiguous formats.
When using log-based formats, we observe high end-to-end
IO performance not only for writing files – as also seen in
log-structured file systems [20] – but also for subsequently
reading them. The latter is in contrast with common wis-
dom about log-structured data. The advantage comes from
the log-based organization and parallel file system structure.
By using a log-based approach, data can be organized so
that it both exploits the large number of the storage targets
present in parallel file systems and maximizes the amounts
of useful data acquired by each read. ‘Useful’ is defined by
how much of the data read from the file as a single storage
operation is part of what was requested by the analysis read
operation overall.

We gain several insights about read performance from this
work. First, the use of standard file formats like NetCDF
and HDF5 can result in high costs in terms of the end-to-
end (i.e., write plus read) IO performance seen by end users.
In response, we advocate separating portability from perfor-
mance objectives. IO systems should be flexible to use the
formats that are most appropriate for the tasks being under-
taken. By using ADIOS’ log-based format BP, for instance,
high performance for data reads is obtained by writing data
across as many storage targets as possible in the parallel file
system, thus improving concurrency when reading. This is
particularly important when the read pattern is one that
inspects a plane in the logical 3-D simulation space rather
than sequentially scanning the entire file.

A second insight concerns standard benchmarks to help
evaluate read performance. With the growing variety of
techniques and formats to address the extreme data volumes
for petascale science, devising ways to comparatively evalu-
ate various techniques and formats with respect to the ways
in which data will ultimately be used is important – i.e.,
with respect to common analysis read patterns. We used
these patterns to create a benchmark that evaluates the IO
performance of representative petascale codes with respect
to their use of different output data formats. Others can
use these patterns with their codes and scientific data sets
to better assess the potential benefits their applications can
derive from adopting new output formats and techniques.

A third insight is that applications should use a ‘balanced’
approach for IO. They should consider both write and read
performance. Only after data is read and analyzed can sci-
entists derive meaningful and useful insights from the petas-
cale simulations they are running. Hence, read performance
directly affects scientific productivity. We demonstrate the
importance of this end-to-end approach to IO with mea-
surements that examine the impacts of data size and orga-
nization on subsequent analysis read patterns. This is done
for both 2-D and 3-D domain decompositions to determine
when, why, and to what extent log-based data formats and
their uni-dimensional contiguous data organizations improve
read performance. The goal is to understand the factors
that affect read performance and the implications of using
a write optimized format for the simulation data’s lifetime.
This is in contrast to an approach that immediately converts
data to the standard contiguous formats currently used by
common analysis tools.

Our research leverages prior work that has shown im-
proved write performance for log-structured file formats for

checkpoint/restarts for both the ADIOS [15] and PLFS [5]
systems. ADIOS is the Adaptive Input/Output System
(ADIOS), a joint project of Oak Ridge National Laboratory,
Georgia Tech and Sandia National Laboratories. PLFS is
the Parallel Log-structured File System developed at Los
Alamos National Laboratory. This paper extends the initial
results for reading checkpoint restarts [18] to precisely for-
mulate the set of six common analysis reading patterns and
then evaluating them.

In the remainder of this paper, related work is presented
first in Section 2 to give background about the domain and
comparative work. This is followed by representative end-to-
end IO patterns seen for petascale applications in Section 3
and a description of the data organization exhibited by log-
based formats and the IO architecture in which they are re-
alized in Section 4. Experimental evaluations of the concept
and its performance appear in Section 5. This is followed
by detailed discussion and analysis of results in Section 6
where we also discuss the implications of using different file
formats on the IO pipeline used with petascale machines.
Conclusions and future work appear in Section 7.

2. RELATED WORK
Based on the knowledge of the potential reading penalties

for log-structured formats [20], self-describing data formats
like HDF5 [1] and NetCDF [10] were developed. These for-
mats offer a balanced approach to write and read perfor-
mance using a logically contiguous format. The scale in-
troduced by petascale science, however, has revealed limita-
tions of these approaches. By coordinating across the writ-
ing processes to achieve a canonical format, writing times
suffer. As further demonstrated in this paper, the reading
times can also be impacted at scale. This means that some of
the optimizations introduced by these formats can become
a liability rather than an advantage. On the other hand,
such formats will remain important in terms of portability
and their use by third-party tools, warranting investigations
of efficient methods for ‘on demand’ format conversion.

The visualization community has done extensive work on
optimizing data layouts for efficient reading. Sarawagi and
Stonebreaker [21] describe how to get good average read-
ing performance for rectangular areas based on frequency of
use. This paper is an extension of this work, but with two
major changes. First, the broad availability of parallel file
systems and the dramatically larger per disk capacities in
RAID arrays change the optimization metric. No longer is
the capacity of a single, local platter as important for storing
a portion of the parallel array. Second, this paper seeks to
understand the data organization based on common analysis
reading patterns rather than a generalized rectangular area.
Yan and Rhodes proposed a scheme for in memory layout
of data for efficient visualization operations [27]. However,
they do not address the on storage format and the implica-
tions that has on reading performance. Rhodes, et al. [19]
address reading performance by prefetching without adjust-
ing the underlying storage format.

Other approaches to addressing the mismatch between
the output organization and the read pattern needs of anal-
ysis codes include the use of a staging area to host data
reorganization and pre-analysis routines. Both synchronous
data staging [17] and the IO Forwarding Software Layer [4]
effectively manage the writing time spent by an applica-
tion through aggregating such requests and thereby par-



tially managing the resulting impact on the storage system.
However, such work has not taken advantage of staging ar-
eas to accelerate subsequent data use for analysis or other
reading tasks. Complementary work pursued in the Pre-
DatA [28] project reduces the need for reading or the sizes
of subsequent reads by pre-analyzing data to the extent pos-
sible. The cost of the additional resources used is mitigated
through write time reductions and improved data prepara-
tion for later analysis operations.

The utility of the log-based data organization is moti-
vated in part by previous work [22] that has shown that
multi-dimensional data may be mapped efficiently to mod-
ern disk drives in ways that preserve spatial locality across
multiple dimensions. Here, in addition to data being read
efficiently and sequentially in a single dimension, intelligent
placement allows other dimensions to be accessed with low
positioning costs. Although our goals are similar (efficient
access of data across multiple dimensions), our approach is
orthogonal and compatible: we operate at the level of the
parallel file system, whereas prior work is implemented us-
ing the firmware below the device level (albeit exposed to
the application).

Zazen [25] tries to improve end-to-end IO performance
by bypassing a remote, parallel file system such as Lustre.
Instead, Zazen caches simulation data as a series of small
files across the multiple disks of an ancillary analysis cluster
attached to the high performance machine via a network.
The approach yields excellent performance for appropriate
analysis workloads (in particular, molecular dynamic simu-
lations that map well to a time series of small files), but does
not consider the simultaneous attainment of high write per-
formance. Further, its architectural assumptions differ in
that for them, there is no parallel file system attached to
the petascale machine.

3. END-TO-END IO PATTERNS
This section describes the end-to-end IO patterns, why

they were chosen, and discusses some of the file layout fea-
tures and how they relate to the IO patterns.

The first subsection summarizes the results from the pre-
vious papers that evaluate the writing and reading perfor-
mance for checkpoint restarts. The second subsection de-
scribes the full set of six common reading patterns proposed
as a standard benchmark and used as test cases in this pa-
per. The last subsection discusses file layout issues related
to the end-to-end patterns.

3.1 Initial performance assessment
A brief summary of the writing performance seen for log-

based formats is presented first followed by tests for reading
checkpoint restarts.

3.1.1 Write Performance Advantages
Initial write performance measurements showed [14] that

for the Chimera supernova code, ADIOS and the log-based
BP approach had an up to 1000× performance advantage
compared to data being written with the standard HDF5
output format, as shown in Figure 1. The figure shows three
ADIOS output methods all using the BP file format, POSIX,
MPI-IO independent, and MPI-IO collective, as compared
with the original HDF5 implementation. Later optimiza-
tions of the HDF5 calls reduced the advantages seen by
ADIOS/BP to 100×, similar to what has been shown true

for the log formats used by PLFS [5]. While one might argue
that additional data conversion costs will arise if end users
require data to be in some standard format like HDF5, such
conversion costs have been measured as being linear with
respect to data size [14].

3.1.2 Restart Reading Performance Advantages
For a broader comparison of contiguous formats, addi-

tional tests also compared against another commonly used
contiguous format, CDF-5 [11], part of PnetCDF. For these
cases, reading the restart files, using either the BP or PLFS
log-based file formats [18], resulted in read performance sim-
ilar to and up to 3× better than that obtained for PnetCDF,
as shown in Figure 2. These particular tests evaluated the
time to read the checkpoint output as if a restart from fail-
ure were happening for BP as compared with PnetCDF,
restarting with half as many processes as originally wrote
the checkpoint.

Figure 1: Restart Writing Bandwidth for the
Chimera supernova code [14]

3.2 Test Cases
For both of our test cases, the simulation space consists of

a 3-dimensional space distributed across the processes that
comprise the application run. In the case of a 2-D domain
decomposition, the 3-D space is decomposed such that one
of the three dimensions is not split across processes. For a
3-D domain decomposition, the space is split into rectangu-
lar sub-areas that do not span any dimension entirely. For
both decompositions, the data stored local to each process
is a 3-D piece of the entire space. When this data is writ-
ten to disk, the shape of this space, particularly the overall
data size and shape written as a contiguous chunk, plays
an important role determining the performance of common
analysis read patterns.

To test these common domain decompositions, we first es-
tablish a typical set of analysis read patterns used by petas-
cale science codes. These patterns are based on the au-
thors’ direct experience with many application teams in the
USA and beyond including combustion (S3D), fusion (GTC,
GTS, XGC-1), earthquake simulation (SCEC), Magnetohy-
drodynamics (MHD) (Pixie3D), numerical relativity code
(PAMR), and supernova (Chimera) codes. The union of
these results is represented in the set of test cases described
below. The 2-D domain decomposition is used with an older
version of the Chimera supernova code [16] in production
use at petascale run sizes on systems at Oak Ridge National
Lab and Texas Advanced Computing Center. Chimera is a



Figure 2: Pixie3D Restart Reading Performance,
Large Data Model, Half as Many Process Reading
as Wrote the Checkpoint [18]

code that couples multigroup flux-limited diffusion neutrino
transport (a sophisticated approximation of Boltzmann trans-
port) along radial rays (the ray-by-ray-plus approximation)
to three-dimensional hydrodynamics, a nuclear burning net-
work, Newtonian self gravity with a spherical general rela-
tivistic correction, an industry standard nuclear equation of
state (Lattimer-Swesty, Shen, Wilson), and with state of the
art neutrino interactions. For a 3-D domain decomposition,
the S3D combustion code [7] is examined. S3D is a flow
solver for performing direct numerical simulation (DNS) of
turbulent combustion. This resulted in the identification of
the following write/read patterns:

1. All data is written and read, but writes and reads are
done by different numbers of processes, and for gener-
ality those numbers are not simple multiples of each
other.

2. All of 1 variable is read from a complete output set.
Again, this is performed using different, non-multiple
numbers of writers and readers. An example is reading
the temperature values associated with particles. (see
Figure 3(a)).

3. All of a few variables using different, non-integer mul-
tiple numbers of processes. An example is reading
three variables to generate a magnetic field vector.

4. A plane in each dimension for qualitative exploration
(see Figure 3(b)).

5. An arbitrary rectangular subset representing a cubic
area of interest (see Figure 3(d)).

6. An arbitrary area on an orthogonal plane represent-
ing one of a collection of read operations to obtain an
arbitrary area within the simulation space (see Fig-
ure 3(c)).

For analysis reads, Chimera most commonly uses patterns
1-3: all data, all of 1 variable, and all of a few variables. Pat-
terns 4-6 are used as part of an interactive visualization: a
plane in each dimension, an arbitrary rectangular subset,
and an arbitrary area on an orthogonal plane. The S3D
code uses nearly the same patterns: pattern 1 for produc-
tion runs/restarts, patterns 2 and 3 for postprocessing and
analysis, pattern 4 for production sanity checks and quali-
tative exploration, and pattern 5 for postprocessing and in

(a) Whole Domain (b) Whole Plane

(c) Partial Plane (d) Sub Area
Figure 3: Data Selection Patterns

depth analysis. Pattern 6 is not commonly used by S3D.
The first pattern, reading all of the data, is essentially the
same as the common restart process where all of the data is
read back in to restore state. This restart performance was
evaluated in previous work [18] so it is not considered further
in this paper. Finally, we were not able to elicit from sci-
ence users other read patterns for the petascale codes under
study, causing us to confine our initial study to the patterns
identified above.

3.3 Understanding end-to-end IO performance
This paper substantially extends the above initial results

reported in [18] in four ways. First, we characterize and
describe the data organizations used to obtain performance
improvements. Second, we determine and evaluate addi-
tional and typical science data read patterns, such as those
used by analysis codes. Third, we diagnose the sources
of performance improvements derived from using log-based
data organizations for large-scale scientific data on the par-
allel file systems used in supercomputer installations. And
fourth, we propose the evaluation patterns as examples of
how reading performance should be evaluated for real-world
usage scenarios for scientific data. The supporting evidence
of the variance in the performance based on the data layout
and sizes shown in the evaluation emphasize a key insight
from our work: data should be stored in ways that reflect
an understanding of how it will subsequently be used.

As a way to describe a portion of a global array stored
in single, contiguous piece, we introduce the term data dis-
trict. For a log-based output, there will be one data district
per variable in each fragment written to the file. Typically,
each fragment represents the entire data output by a single
process. This data decomposition, requiring no interpro-
cess coordination or data movement during output, is one
of the key reasons for attaining high write performance for
a log-based format. For the logically contiguous formats, a
single data district is created for each variable in the file.
Reorganizing the data across process to achieve this lay-
out negatively impacts the writing performance due to the
inter-process communication overhead.

3.4 File Layouts Examined
Since the log-based layout affects the performance to such

a degree, the particular log-based format tested must be de-
scribed in greater detail. The log-based BP file format is one
option provided as part of the ADIOS IO library. ADIOS



is a 64 bit compliant IO componentization that provides
an API almost as simple as POSIX IO. More importantly,
ADIOS permits the runtime selection of different IO mech-
anisms for each IO section of the simulation or host code
using ADIOS. For example, a user can configure ADIOS to
use MPI-IO to a BP file for checkpoint restarts and HDF5
for analysis output without changing the application source
code.

ADIOS’ BP (Binary Packed) file is decomposed into frag-
ments generally based on the processes that create it rather
than on the logical structure of the data. This format is
illustrated in Figure 4. Each of these fragments is referred
to as a Process Group. The last portions of the file consist
of a file version flag and a collection of indices and pointers
to the location in the file for each of the indices.

Figure 4: ADIOS’ BP File Format

At a detailed level, a process group consists of a short
header listing information about the data output grouping
being used, including a user-assigned name, such as restart,
analysis, or diagnostics, the parameters used for this output
method, and a list of variable and attribute entries. Each
variable and attribute entry consists of the metadata for
the item listing the name, data type, array dimensions, if
any, data characteristics, and a payload blob. This pay-
load blob is a memory dump of exactly what was stored in
memory with no byte ordering changes nor restructuring.
The indices consist of exact locations of the process groups,
metadata about the process group, and the list of variably
sized ‘pieces’ including information about the array dimen-
sions and extents, the data characteristics for each piece,
and the list of attributes and the location of each in the
file. Each such variable ‘piece’, then, is a self-contained and
self-identifying data district.

The steps taken when reading from a data district-organized
file include consulting the index to determine the file off-
set for reading data for the local process, reading the rel-
evant district(s), and reorganizing the data discarding the
unneeded data items (i.e., were not requested). There are
opportunities for additional optimizations in reading data
to avoid unnecessary data discards, but those optimizations
have not yet been implemented.

The data district-based organization used with BP is in
contrast to the data organization used by default for the
HDF5 file format. The HDF5 format consists of linked
blocks of items, such as a variable, attribute, or metadata.
Each logical variable in an HDF5 file (and therefore, also
the NetCDF cases studied in this paper) is linearized into a
single blob by reconstructing from all of the pieces provided
by the distributed processes in question into a contiguous,
in order format. The format uses a standard byte-ordering
and major dimension of the logical space as if walking all
of the dimensions, in order, in nested loops. It is possible
to configure HDF5 to use a data districts approach when
storing variables, but it is both manually configured by the
programmer and has no automatic mode for avoiding the
data reorganization to make data districts of particular di-
mensions.

The current version of NetCDF has replaced the underly-
ing file format with HDF5. To our benefit for this evalua-
tion, the relatively simple NetCDF API is a fully optimized
set of calls to the HDF5 API, thus avoiding any bias based
on inappropriate or inefficient use of the HDF5 API.

4. EVALUATION ARCHITECTURE
Our goal is to better understand the read performance

of write optimized scientific data files. This complements
earlier studies and provides a picture of the end-to-end,
i.e., combined write and read, IO performance attainable
on the highly concurrent file systems supporting petascale
machines. The IO software stacks evaluated in our work
use ADIOS version 1.2 and NetCDF 4.0.1.3 configured to
use parallel HDF5 1.8, respectively. Specifically, with the
ADIOS middleware, the IO stack selects the MPI transport
method resulting in a two layer architecture for IO as il-
lustrated in Figure 5(a). NetCDF uses the MPI transport
underneath the HDF5 layer resulting in a three layer soft-
ware stack, illustrated in Figure 5(b). This approach helps
control inefficiencies in using the HDF5 API thereby consti-
tuting an optimized use of the HDF5 API and files. Further,
the additional layer used in the NetCDF stack has negligible
additional overhead compared to that of the ADIOS-based
stack, as total performance is almost entirely dominated by
data movements to and from storage and the NetCDF API
is little more than the minimum set of calls to the HDF5
API necessary to implement the functionality. Finally, to
test these different patterns in a consistent way, an end-
to-end (e2e) IO kernel representative of the write and read
patterns is created. These user programs contain a dupli-
cate of the calls made by the representative application for
IO and exhibit a typical writing pattern and then reads data
using any of the six patterns.

(a) ADIOS (b) NetCDF
Figure 5: IO Software Architectures Tested

The Lustre file system used in all of our evaluations is
configured to use 160 storage targets for all files, the maxi-
mal level of parallelism allowed by Lustre. The stripe size,
the amount of data written to a file before moving to the
next storage target in the round-robin list of storage targets
assigned to this file, plays a role in the performance as well.
For the ADIOS/BP approach, the stripe size is adjusted to
4 MiB automatically. For the NetCDF setup, the stripe size
is set to the default 1 MiB. The impact this stripe size has
on the performance is discussed in section 6.

5. EXPERIMENTAL EVALUATION
All tests are performed on the petascale partition of the

Jaguar machine, known as JaguarPF, at Oak Ridge Na-
tional Laboratory. This Cray XT5 partition contains 18,688
compute nodes in addition to dedicated login/service nodes.
Each compute node contains dual hex-core AMD Opteron
2435 (Istanbul) processors running at 2.6GHz, 16GiB of
DDR2-800 memory, and a SeaStar 2+ router. The SeaStar
2+ routers are connected in a 3D torus topology for scala-
bility. The resulting partition contains 224,256 processing
cores, more than 300TiB of memory, over 6 PB of disk space,
and a peak performance of 2.3 petaflop/s. For all tests, Spi-
der, the ORNL shared scratch space Lustre file system, is
employed. The peak IO performance for Spider’s widow1



partition used in this evaluation from JaguarPF is 60-90
GiB/sec for writing in parallel to the 672 storage targets,
depending on the network route between the compute nodes
and the IO system.

To evaluate the impact of the log-based data organiza-
tion and data districts compared with logically contiguous
data organizations, the five remaining analysis reading pat-
terns described in Section 3 are evaluated over a 3-D do-
main using both a 2-D and a 3-D domain decomposition.
The checkpoint restart pattern has been evaluated in pre-
vious work [18] and is not re-examined here. As a broader
evaluation, additional configurations from Pixie3D are also
evaluated for the 3-D domain decomposition. Pixie3D [6],
an MHD fusion code, organizies data similar to S3D, but
has multiple operating modes that alter the per process size
for each variable. This yields the following sizes for each
variable in each process: small (32 × 32 × 32), medium (64
× 64 × 64), large (128 × 128 ×128), and extra large (256 ×
256 × 256). These four modes are tested for the 3-D domain
decomposition. For these 3-D domain decomposition cases,
all variables are double precision floating point and the sizes
represent the number of doubles in each dimension. In ac-
cordance with that fact, the per process total output data
sizes employed are about 13 MiB for 2-D, 2 MiB for 3-D
small, 16 MiB for 3-D medium, 128 MiB for 3-D large, and
1 GiB for 3-D extra large. Per process variable sizes are
quite different. For the 2-D domain decomposition, it is a
mere 300 doubles or 2400 bytes. For the 3-D case, it is
256 KiB, 2 MiB, 16 MiB, and 128 MiB respectively. These
data sizes are used to generate output files using both 7168
processes and 16384 writing processes.

Since the layout of processes across the logical simula-
tion space affects both data layouts, it is important to note
how the processes are arranged when generating the test
files for each test case. For the 2-D domain decomposition,
the processes are arranged in a 112×64 (X by Y) space for
7K processes and 128×128 for 16K processes. For the 3-
D domain decomposition, for all per-process data sizes, a
28×16×16 distribution is used for the 7K process runs and
a 32×32×16 (X by Y by Z) distribution is used for the 16K
process runs. This balances each dimension as fully as pos-
sible for a fixed amount of data per process.

Tests are deliberately designed to avoid bias. In particu-
lar, while the use of 16K processes is advantageous in terms
of running at a larger scale, those runs could be perceived
as biased in that these tests can more easily ‘hit’ process
boundaries for reading. For example, if the sub area read
neatly falls on the natural boundaries created when the data
was written, fewer reads would be required to retrieve the
data because more processes would be able to read the data
from whole data district(s). This would result in unfairly
benefitting the log-structured approach. Our response is
to run additional tests with 7K processes as an alternative
size yielding reads that will not easily ‘hit’ the even process
boundaries for our tests with even-counts of processes per
dimension against odd numbers of fragments written for at
least one dimension. For reading, operations are split evenly
among the reader processes.

To validate the performance impact at various scales, two
sets of tests are run. The first set of ‘large scale’ results is a
series of eight runs ranging from 512 processes to 4096 pro-
cesses, at 512 process increments. These tests are each run
at least 5 times with the arithmetic means of the elapsed

Pattern 7168 16384
2 16.4 MiB 37.5 MiB
3 49.2 MiB 112.5 MiB
4 468.5 KiB 728 KiB
5 2.05 MiB 4.68 MiB
6 117.1 KiB 182 KiB

Table 1: 2-D Data Sizes Read for Each Analysis
Pattern
time being shown on the graphs. These steps are chosen for
two reasons. First, for S3D, the typical analysis execution
is on no fewer than one-fourth of the prior simulation run’s
process count. Second, at the supercomputing centers, anal-
ysis clusters of 512 to 1024 cores are becoming much more
common. As this trend continues, 4096 cores for an analy-
sis cluster will soon be common. The second set of ‘small
scale’ experiments examine various process counts ranging
from four to 512, in increments of 4 processes. At least four
samples are collected for each process count across the five
tests. The arithmetic means of the resulting times are used
for comparisons. This experiment set represents both an ini-
tial exploration scenario before a more extensive, long-term
data analysis run is performed and analyses performed on
small data sets. Tests are run for all cases where sufficient
local memory is available. For example, it is not possible
to read a 2 TiB variable into 4 processes on the machine
tested. The elapsed wall clock time, in seconds, is measured
from the opening of the file, through the read operation(s),
to the end of closing the file for the slowest process of the
readers.

The location of the planar areas within the 3-D domain
is selected to be in the middle for each dimension. For
the sub-planes, the same location is selected, but the plane
is bounded to one-quarter the size of the plane and cen-
tered. That is, the sub-plane boundary is located halfway
between the edge and center for each side. The sub-area
selection similarly selects a rectangular area bounded by
planes halfway between the edge and the center. To en-
sure that no inadvertent advantage is gained based on the
in-memory data and/or file data layout, any planar or linear
selection of data is performed multiple times, once in each
dimension in each test case. For example, when reading a
plane, 3 planes are read – one each in X, Y, and Z. The
total time for all three reads is used for the results. This
approach controls for the on-disk layout and any reorgani-
zation required to return the selected data.

Since the aggregate data sizes are consistent across all
reads, they are summarized in Tables 1 and 2. Briefly, based
on how the domain is constructed for Chimera, the data sizes
are very modest, even for the 16K process run. Chimera’s
complexity comes from the number of variables used rather
than the sizes individual variables. This large count guar-
antees that few, if any, of the data districts will fall on the
beginning of a stripe boundary. For the S3D application,
even the smallest sizes yield variables that reach 1.75 GiB.

While this paper does not evaluate write performance, we
note that there was a set of tests we could not complete
for the 3-D domain decompositions. For the 2-D domain
decomposition, the ADIOS/BP writing tasks took less than
10 minutes to complete but the NetCDF tasks took nearly
1 hour to complete. This result motivates the use of log-
structured checkpoint formats in ADIOS/BP and PLFS.
For the 3-D domain decomposition, for ADIOS/BP, all eight
data files took less than 90 minutes to complete. This in-



Small Medium Large Extra Large
Pattern 7168 16384 7168 16384 7168 16384 7168 16384

2 1.75 GiB 4 GiB 14 GiB 32 GiB 112 GiB 256 GiB 896 GiB 2048 GiB
3 5.25 GiB 12 GiB 42 GiB 96 GiB 336 GiB 768 GiB 2688 GiB 6244 GiB
4 9 MiB 16 MiB 36 MiB 64 MiB 144 MiB 256 MiB 576 MiB 1 GiB
5 224 MiB 512 MiB 1.75 GiB 4 GiB 14 GiB 32 GiB 112 GiB 256 GiB
6 2.25 MiB 4 MiB 9 MiB 16 MiB 36 MiB 64 MiB 144 MiB 256 MiB

Table 2: 3-D Data Sizes Read for Each Analysis Pattern

cludes the 1 GiB-per-process-by-16384 process extra large
case. For NetCDF, just the 7168 process cases took nearly
11 hours. For the 16384 processes case, for just the small,
medium, and large tasks, NetCDF took nearly 4 hours. The
extra large case for 16384 processes did not complete in 24
hours, the upper limit available to the authors for running
tests on the JaguarPF machine. By estimating the amount
of data in the partial output when the task was terminated,
another 90 minutes was likely to be necessary for this single
output to complete. Note that this estimated extra time is
the amount of time taken by ADIOS/BP for all eight output
files.

5.1 Large Scale Results
Large scale tests examine the performance of the log-based

data district decomposition compared with a logically con-
tiguous canonical format for common analysis read patterns
at representative process counts, again using ADIOS/BP
and NetCDF, respectively. Figure 6 shows the 2-D domain
decomposition results. For these tests, the logically con-
tiguous NetCDF approach is faster for essentially all tests.
The explanation for this performance relates to the domain
decomposition itself. This Chimera example has very little
data on a per process basis, relying on a thin ‘pencil’ of data.
This results in a data district that consists of 300 doubles,
a mere 2400 bytes. When reading the planar areas or sub
areas, all 7K or 16K data districts must be read in when
using the log-based format for the plane across the domain
decomposition demonstrating the need for additional opti-
mizations for the log-based BP format. Another contribu-
tor to the advantages observed for the logically contiguous
NetCDF format is that HDF5 has buffering and caching for
read operations. If the entire variable will fit into memory, it
is read by one process and then distributed using messaging.
This test case also demonstrates why the contiguous format
was favored in the past: 2-D simulations and analysis were
more prevalent. Unfortunately, this is no longer the case, as
3-D simulations now largely prevail.

The notion and use of data districts directly reflect the im-
portance of 3-D domain decompositions. Specifically, while
2-D domain decompositions divide data into full extent ‘pen-
cils’ of the entire domain, 3-D domain decompositions di-
vide the domain into blocks and assemble them in a 3-D
pattern to yield the entire simulation space, motivating the
‘dimensional’ or spatial nature of data districts. As process
counts increase with a corresponding growth in the simu-
lation space, fewer codes will be able to use a 2-D domain
decomposition due to memory limitations. For these cases,
a 3-D domain decomposition will be required.

Figure 7 shows the results for the extra large data model.
The additional graphs did not add any different informa-
tion and are omitted for space reasons. The full results
are available in Gerald Lofstead’s dissertation [9]. Overall,
data districts show superior performance for the 3-D do-
main decomposition for all data sizes, process counts, and

tests. Again, by splitting the data into ‘dimensional’ chunks
instead of using a single logically contiguous layout, fewer,
larger reads can be performed to retrieve the data for all
of the different patterns. Instead of performing many very
small reads to obtain a plane, only the fragments that con-
tain the planar pieces will be read, whereupon relevant data
is extracted using in-memory operations.

5.2 Small Scale Results
Some examples of the small scale results are presented in

Figures 8 and 9.
For the 2-D domain decomposition, the small scale results

mirror those attained with the large scale tests. For the
7K processes case, the performance of BP’s log-based data
districts format is between a factor of 2× to 3× worse than
that seen with the logically contiguous NetCDF format. For
the 16K processes case, the performance worsens to a factor
between 4× and 5× worse.

At a more detailed level, the 2-D results break down as fol-
lows. For all tests, the logically contiguous NetCDF format
performance is essentially identical for both the 7K processes
and 16K processes data sets for all process counts. The log-
based BP 7K processes set is 2× worse; the 16K processes
set is 4× worse.

For the 3-D domain decomposition results, there is a bit
more variation. For test 2 (all of 1 variable) as shown in Fig-
ure 9(a), the log-based BP format performance for both 7K
and 16K are essentially identical for all process counts. The
performance is essentially identical for the small, medium,
and large cases suggesting the observed performance is a
minimum time required to perform this experiment. The
much larger data size for the extra large test measures out
to the peak performance for the file system at around 8
seconds to read all of the data. While the logically contigu-
ous NetCDF format has worse performance in all cases, it
is only slightly worse for small scale, with the performance
degrading progressively as the data size increases.

For test 3 (all of a few variables) shown in Figure 9(b), the
performance for the log-based BP format follows the same
characteristics with the small, medium, and large cases hav-
ing essentially identical performance, around 3.5 seconds,
with the extra large taking longer at around 13 seconds.
The logically contiguous NetCDF format again is worse in
all cases. For the small data model, it is roughly 3× worse
and performance progressively degrades from there.

Test 4 (a full plane in each dimension) shown in Fig-
ure 9(c), is more interesting. For the small and medium
data models, both the logically contiguous NetCDF and the
log-based BP formats are essentially the same performance.
For the large data model, the logically contiguous format
is 2× worse than the log-based format. For the extra large
model, the log-based format has worse performance by a fac-
tor of about 1.6×. If the more detailed data were available,
it is likely the additional reads for the pieces are the prob-
lem. Do note that as the number of readers increases, the
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Figure 6: 2-D Reading Performance
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(d) Sub Area (e) Sub Planes

Figure 7: 3-D Extra Large Model Reading Performance



time for the log-based format stays nearly flat while the log-
ically contiguous time grows passing BP at 2048 processes
and continues to grow rapidly from there.

Test 5 (a rectangular subset) shown in Figure 9(d), shows
similar characteristics to tests 2 and 3 (Figures 9(a) and 9(b)
respectively). The performance for the log-based BP format
is essentially constant for small, medium, and large data sets
with a longer time for extra large. The logically contiguous
NetCDF format starts nearly the same for small data and
grows progressively worse as the data size increases.

Test 6 (a sub plane in each dimension) shown in Fig-
ure 9(e), is more interesting. For the small, medium, and
large cases, the performance for the log-based BP and the
logically contiguous NetCDF formats is essentially identi-
cal. For extra large, the log-based format 7K performance
is about 1.1× worse than the logically contiguous format.
The 16K processes performance for the log-based format is
better than both at about 0.6× as much time. As is the
case with test 4 (a full plane in each dimension) shown in
Figure 9(c), as the number of readers scales, the perfor-
mance reverses. In this case, it happens much sooner at 512
processes and the logically contiguous format performance
degrades more slowly as reading processes are added.

6. DETAILED DISCUSSION AND ANALY-
SIS

Examination of the performance for both the large scale
and small scale experiments, for the 2-D and 3-D domain
decompositions, sheds light on important considerations for
both writing and reading performance. To recap the phys-
ical distribution of the data sets on disk, for all tests, the
output is striped across 160 storage targets. For NetCDF,
the stripe size is the default 1 MiB while it is adjusted au-
tomatically by ADIOS to 4 MiB.

If the file system evaluated were SSDs, the performance
would depend on the cost of an IO operation compared with
the cost of transferring blocks of data. Since the ideal block-
ing factor for an SSD can be very different from rotational
media, the log-based format may end up with a similar num-
ber of block transfers as the logically contiguous making the
performance a wash. For writing, the very dominant cost
for the logically contiguous format is the coordination and
data rearrangement within the compute area prior to any
data moving to storage. This cost would not be mitigated
by an SSD storage array. Overall, the end-to-end perfor-
mance would still be superior for the log-based format for
larger data, and in particular, 3-D domain decompositions.

Overall, the variability of the results is relatively small.
The standard deviation runs around 10% for all tests and
generally did not exceed 25% for any of the tests.

These results have shown the importance of concurrency,
separating performance concerns from portability, and ‘nat-
ural’ file organizations. Each of these is explained in more
detail below.

Concurrency is critical for high IO performance. Two
factors affect the impact of concurrency on IO performance.
First, the amount of data located on a single storage target
determines how much data can be accessed at one time.
Wider spread of data implies more concurrency in access,
but of course, each storage target can only service one client
at a time as disk drives are serial access device. The goal,
therefore, is to balance these two factors so that the largest
number of storage targets can be employed for reading at one

time without overloading any target with too many requests
that ultimately are serviced serially.

For the 2-D, 7K processes case for ADIOS/BP, the full
plane of data test reads three planes: 112 data districts, 64
data districts, and 7168 districts (one set for each dimen-
sion). For the 3-D 7K process runs for ADIOS/BP, the full
plane of data test reads the three planes: 448 (28×16) data
districts, 256 (16×16) data districts, and 448 (16×28) data
districts. For the 2-D domain decomposition, reading 7168
blocks from 160 storage targets overwhelms the IO system
resulting in poor performance. NetCDF can read all of the
data at once and then distribute to the other processes. This
one large read, even if it is done serially from a single stor-
age target, is faster than the 7168 reads from all available
storage targets. For the 3-D domain decomposition, the
use of data districts reduces the number of blocks read to
a manageable number across all patterns resulting in more
consistent performance. Because NetCDF spreads the data
according to the logical global array dimensions, this results
in either many very small reads or in larger reads with poor
relevant data density. In essence, the performance penalty
seen by ADIOS/BP for 2-D is seen by NetCDF for 3-D, for
similar reasons.

The stripe size also plays a role. For the 2-D case, ADIOS/BP
only spreads the output from a process across 4 storage tar-
gets compared with NetCDF’s 13. The reduced concurrency
forced on ADIOS further impacts performance. For the 3-D
case, again, the opposite is true. The size of the variables
causes them to be striped across all of the storage targets.
By using a larger stripe size, the number of requests to a
single storage target is sharply reduced, improving response
time.

Separate considerations of performance from portability.
Performance is strongly linked to file layout. Carefully siz-
ing data according to inherent buffer sizes and considering
the total data size to avoid interference can achieve better
performance.

For the 2-D case, the failure to address the inherent buffer
sizes, such as the 1 MiB chunk used in many disk caching
systems, incurs the full overhead of locating the data for
only a small amount of time spent reading it. In particular,
because only 2400 bytes for any variable is written contigu-
ously, the most data that can be retrieved when reading a
data district is 2400 bytes. Conversely, by storing the en-
tire variable contiguously, NetCDF’s single read pays the
disk overhead only once (or a small number of times, if it
is striped). In contrast, for the 3-D case, until the data per
data district becomes enormous (128 MiB per data district,
a total of 1 GiB per fragment), all reading patterns are the
same or superior for the log-based approach. Even at the
enormous size, once the process count grows, the advan-
tage returns to the log-based approach. The advantages for
writing have been clear for a while. With this study, the
advantages for reading, for an HPC and parallel file system
environment, are apparent as well.

Choosing ‘natural’ file organizations. Sequential read pat-
terns for scientific data do occur, but they are not the only
patterns to consider. Scientific discoveries occur as the data
is explored through analysis tools that use select portions
of the data. More precisely, data is retrieved and analyzed
in regions determined by the types of analysis being done
rather than as an entire data set. By arranging the data in
smaller blocks – as data districts – increased efficiency can
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be attained for retrieving the data. In other words, it is no
longer necessary to span the entire data storage, skipping
large areas of unrequested data, just to get to another few
bytes of relevant data.

For the 2-D domain decomposition, each data district con-
tains just 2400 bytes (300 doubles). For reads that stay
within those 300 doubles, performance is good. Once a
neighbor in the other two dimensions is requested, however,
one or more read operation(s) from somewhere else in stor-
age is required. Unless all of the data can be read into
memory and parceled out through messaging, many reads
are required even for retrieving a small region. Therefore,
for the 3-D domain decomposition with its local dimensions
of at least 32×32×32 for the small data model, far more
relevant data can be read in a single operation than in the
contiguous layout. This natural organization is a key benefit
of the data districts approach. In contrast, with NetCDF,
traversing any dimension except for one will require seeking
to different areas of the file to read a small amount of data.

7. CONCLUSIONS AND FUTURE WORK
As HPC has moved through terascale into petascale com-

puting, formerly efficient approaches for encoding data and
performing IO must be revisited. In particular, the 3-D
domain decompositions used by petascale simulation codes
demand new approaches in how data is organized and for-
matted for efficient storage on the parallel file systems used
with petascale machines. To that end, benchmarks that ex-
amine the end-to-end performance using this generated data
are important. The six common reading patterns presented
in this paper are based on the analysis and other reading
tasks commonly performed on this data.

To show the importance of these tests, this paper de-
scribes a log-based approach to data storage that organizes
data as ‘dimensional’ data chunks, termed data districts,
that can be efficiently and concurrently written to and read
from the many storage targets such systems employ. The
outcome is high end-to-end, i.e., write and read, perfor-
mance for log-based data organizations, in addition to no-
table improvements over the performance observed for con-
tiguous encodings used by the standard file formats in cur-
rent use, such as HDF5 and NetCDF, excepting only cases
of 2-D domain decompositions with small variable sizes.

Future work with log-based formats should develop ad-
ditional optimizations for 2-D domain decomposition, such
as the use of aggregation networks to reduce the number of
log records being read and written. Also of interest is the
exploration of trade-offs for achieving improved read perfor-
mance without unduly impacting that of writing, as partly
addressed by data sieving [24]. Also of interest is a study
of the impact of alternative in memory data layouts, in row
major vs. column major order, on both writing and read-
ing performance. Finally, it would be useful to investigate
automated methods for data conversion and/or replication
based on ‘downstream’ usage requirements, with methods
that use asynchronous IO coupled with in-flight data ma-
nipulation and data staging.

The results presented in this paper do not cover all of the
different data organization techniques employed by petas-
cale science codes. For example, adaptive mesh refinement
(AMR) and non-uniform grid codes both have different data
organizations both in memory and on disk. These evalu-
ations and additional example read intensive benchmarks

should be developed to explore the performance of differ-
ent IO layouts, organizations, and techniques for these and
other data organizations.

Additional work with many of the same authors as this pa-
per currently in submission further examines some of these
topics by considering different data organization techniques
for placing data on the Lustre storage targets and split-
ting large data districts. It uses two of the six evaluation
patterns, the full plane and the sub area, to measure the
effectiveness of these new techniques. Further work will ex-
amine doing collective-like partial aggregation of data to
build larger data districts to address the shortcomings of
the small data experienced in the 2-D case examined in this
paper.
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